" />

Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:[email protected] & [email protected]
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.4

Comparisons of Heart Size of Bufo gargarizans from Different Altitudinal Gradients in a Common Garden Environment: Is Hesse's Rule Applicable to Ectotherms?
Author of the article:LI Ping1,2, TAN Song1,2, YAO Zhongyi1,2, FU Jinzhong1,3, CHEN Jingfeng1*
Author's Workplace:1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Department of Integrative Biology, University of Guelph, Guelph ON N1G 2W1, Canada
Key Words:high altitudinal adaptation; Hesse's rule; counter-gradient variation; organ size; Bufo gargarizans
Abstract:Hesse's rule refers to the relative heart weight (mass) of a common species in different populations or closely related species increases with increasing latitudinal or elevational gradients. This rule was originally found in endotherms, but whether it is applicable in ectotherms remains unknown. Here, the differences in relative size of hearts and other function-associated organs (liver, spleen, lung, kidney and fat body) in Bufo gargarizans populations from different elevational gradients in a common garden were examined. The results showed that the relative mass of heart, liver, lung, kidney and fat body decreased with the increase of altitude, and this was opposite to the Hesse's rule. However, the pattern of the spleen was consistent with Hesse's rule. These findings imply that ectothermic vertebrates may reduce the levels of energy metabolism to adapt the high altitudinal environments.
2020,39(4): 394-400 收稿日期:2020-01-04
分類號:Q959.5
基金項目:國家自然科學基金項目(31370431;31729003);國家重點研發計劃課題項目(2018YFB1304703);生態環境部生物多樣性調查評估項目(2019HJ2096001006);四川省科技廳應用基礎項目(2018JY0617)
作者簡介:李蘋(1993-),碩士研究生,研究方向:動物生理生態學
*通信作者:陳競峰,E-mail:[email protected]
參考文獻:
金晨晨, 瞿康山, 張志強. 2014. 黑斑側褶蛙肥滿度及臟器重量的性別和季節差異[J]. 四川動物, 33(1):106-112.
張瑩, 高慧清, 王志, 等. 2017. 中華蟾蜍體重及臟器大小對禁食和重喂食處理的響應[J]. 動物學雜志, 52(2):294-303.
張志強. 2015. 動物生態學研究中免疫學參數的選擇及其優缺點分析[J]. 四川動物, 34(1):145-148.
Berven KA. 1982. The genetic-basis of altitudinal variation in the wood frog Rana sylvatica. 1. An experimental-analysis of life-history traits[J]. Evolution, 36(5):962-983.
Boutilier RG, Donohoe PH, Tattersall GJ, et al. 1997. Hypometabolic homeostasis in overwintering aquatic amphibians[J]. Journal of Experimental Biology, 200(2):387-400.
Canale CI, Henry PY. 2010. Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability[J]. Climate Research, 43(1-2):135-147.
Cardilini APA, Buchanan KL, Sherman CDH, et al. 2016. Tests of ecogeographical relationships in a non-native species:what rules avian morphology?[J]. Oecologia, 181(3):783-793.
Cavieres G, Sabat P. 2008. Geographic variation in the response to thermal acclimation in rufous-collared sparrows:are physiological flexibility and environmental heterogeneity correlated?[J]. Functional Ecology, 22(3):509-515.
Chen W, Zhang LX, Lu X. 2011. Higher pre-hibernation energy storage in anurans from cold environments:a case study on a temperate frog Rana chensinensis along a broad latitudinal and altitudinal gradients[J]. Annales Zoologici Fennici, 48(4):214-220.
Garofalo F, Imbrogno S, Gattuso A, et al. 2006. Cardiac morpho-dynamics in Rana esculenta:influence of sex and season[J]. Comparative Biochemistry and Physiology, Part A, 145(1):82-89.
Gillooly JF, Gomez JP, Mavrodiev EV. 2017. A broad-scale comparison of aerobic activity levels in vertebrates:endotherms versus ectotherms[J/OL]. Proceedings of the Royal Society B:Biological Sciences, 284:20162328[2019-10-30]. http://dx.doi.org/10.1098/rspb.2016.2328.
Guo BC, Lu D, Liao WB, et al. 2016. Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad Bufo andrewsi[J]. Molecular Ecology, 25(16):3884-3900.
Hammond KA, Roth J, Janes DN, et al. 1999. Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus[J]. Physiological and Biochemical Zoology, 72(5):613-622.
Hammond KA, Szewczak J, Krol E. 2001. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient[J]. Journal of Experimental Biology, 204(11):1991-2000.
Hesse G. 1937. Vber das Oleandrin[J]. Berichte der deutschen chemischen Gesellschaft (A and B Series), 70(11):2264-2267.
Jonsson KI, Herczeg G, O'Hara RB, et al. 2009. Sexual patterns of prebreeding energy reserves in the common frog Rana temporaria along a latitudinal gradient[J]. Ecography, 32(5):831-839.
Li WX, Liang SW, Wang HH, et al. 2016. The effects of chronic hypoxia on thermoregulation and metabolism in Phrynocephalus vlangalii[J]. Asian Herpetological Research, 7:109-117.
Liao JC, Wang Y, Zhao LM, et al. 2010. Effects of environmental factors on organ mass of midday gerbil (Meriones meridianus Pallas, 1773)[J]. Mammalian Biology, 75(5):381-388.
Liao WB, Liu WC, Merila J. 2015. Andrew meets Rensch:sexual size dimorphism and the inverse of Rensch's rule in Andrew's toad (Bufo andrewsi)[J]. Oecologia, 177(2):389-399.
Martin LB, Pless M, Svoboda J, et al. 2004. Immune activity in temperate and tropical house sparrows:a common-garden experiment[J]. Ecology, 85(8):2323-2331.
Muller J, Bassler C, Essbauer S, et al. 2014. Relative heart size in two rodent species increases with elevation:reviving Hesse's rule[J]. Journal of Biogeography, 41(12):2211-2220.
Nelson RJ, Demas GE. 1996. Seasonal changes in immune function[J]. Quarterly Review of Biology, 71(4):511-548.
Nespolo RF, Bacigalupe LD, Sabat P, et al. 2002. Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opossum Thylamys elegans:the role of thermal acclimation[J]. Journal of Experimental Biology, 205(17):2697-2703.
Piersma T, Bruinzeel L, Drent R, et al. 1996. Variability in basal metabolic rate of a long-distance migrant shorebird (red knot, Calidris canutus) reflects shifts in organ sizes[J]. Physiological Zoology, 69(1):191-217.
Sears MW. 2005. Resting metabolic expenditure as a potential source of variation in growth rates of the sagebrush lizard[J]. Comparative Biochemistry and Physiology, Part A, 140(2):171-177.
Shirkey NJ, Hammond KA. 2014. The relationship between cardiopulmonary size and aerobic performance in adult deer mice at high altitude[J]. Journal of Experimental Biology, 217(20):3758-3764.
Storey KB, Storey JM. 2017. Molecular physiology of freeze tolerance in vertebrates[J]. Physiological Reviews, 97(2):623-665.
Trzcionka M, Withers KW, Klingenspor M, et al. 2008. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus[J]. Journal of Experimental Biology, 211(12):1911-1918.
Tups A, Helwig M, Khorooshi RMH, et al. 2004. Circulating ghrelin levels and central ghrelin receptor expression are elevated in response to food deprivation in a seasonal mammal (Phodopus sungorus)[J]. Journal of Neuroendocrinology, 16(11):922-928.
Wen GN, Yang WZ, Fu JZ. 2015. Population genetic structure and species status of asiatic toads (Bufo gargarizans) in western China[J]. Zoological Science, 32(5):427-434.
Yang WZ, Qi Y, Lu B, et al. 2017. Gene expression variations in high-altitude adaptation:a case study of the asiatic toad (Bufo gargarizans)[J/OL]. BMC Genetics, 18(1):62[2019-10-20]. https://link.springer.com/article/10.1186/s12863-017-0529-z.
Young S, Egginton S. 2011. Temperature acclimation of gross cardiovascular morphology in common carp (Cyprinus carpio)[J]. Journal of Thermal Biology, 36(7):475-477.
Zhan AB, Fu JZ. 2011. Past and present:phylogeography of the Bufo gargarizans species complex inferred from multi-loci allele sequence and frequency data[J]. Molecular Phylogenetics and Evolution, 61(1):136-148.
Zhao L, Mai CL, Liu GH, et al. 2019. Altitudinal implications in organ size in the Andrew's toad (Bufo andrewsi)[J]. Animal Biology, 69(3):365-376.
Zhong MJ, Wang XY, Huang YY, et al. 2017. Altitudinal variation in organ size in Polypedates megacephalus[J]. Herpetological Journal, 27(2):235-238.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology
海南体彩飞鱼开奖直播